September 29

1 comments

What is EPIGENETICS? What does EPIGENETICS mean? EPIGENETICS meaning, definition & explanation

By heheals

September 29, 2020




✪✪✪✪✪ http://www.theaudiopedia.com ✪✪✪✪✪

What is EPIGENETICS? What does EPIGENETICS mean? EPIGENETICS meaning – EPIGENETICS pronunciation – EPIGENETICS definition – EPIGENETICS explanation – How to pronounce EPIGENETICS?

Source: Wikipedia.org article, adapted under https://creativecommons.org/licenses/by-sa/3.0/ license.

In the science of genetics, epigenetics is the study of cellular and physiological phenotypic trait variations that result from external or environmental factors that switch genes on and off and affect how cells express genes. Hence, epigenetic research seeks to describe dynamic alterations in the transcriptional potential of a cell. These alterations may or may not be heritable, although the use of the term epigenetic to describe processes that are heritable is controversial. Unlike genetics based on changes to the DNA sequence (the genotype), the changes in gene expression or cellular phenotype of epigenetics have other causes, thus use of the prefix epi- (Greek: ???- over, outside of, around).

The term also refers to the changes themselves: functionally relevant changes to the genome that do not involve a change in the nucleotide sequence. Examples of mechanisms that produce such changes are DNA methylation and histone modification, each of which alters how genes are expressed without altering the underlying DNA sequence. Gene expression can be controlled through the action of repressor proteins that attach to silencer regions of the DNA. These epigenetic changes may last through cell divisions for the duration of the cell’s life, and may also last for multiple generations even though they do not involve changes in the underlying DNA sequence of the organism; instead, non-genetic factors cause the organism’s genes to behave (or “express themselves”) differently.

One example of an epigenetic change in eukaryotic biology is the process of cellular differentiation. During morphogenesis, totipotent stem cells become the various pluripotent cell lines of the embryo, which in turn become fully differentiated cells. In other words, as a single fertilized egg cell – the zygote – continues to divide, the resulting daughter cells change into all the different cell types in an organism, including neurons, muscle cells, epithelium, endothelium of blood vessels, etc., by activating some genes while inhibiting the expression of others.

source

heheals

About the author

Leave a Repl​​​​​y

Your email address will not be published. Required fields are marked

{"email":"Email address invalid","url":"Website address invalid","required":"Required field missing"}

Never miss a good story!

 Subscribe to our newsletter to keep up with the latest trends!